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Fringe 2021 Recommendations

Communicating results and their uncertainty
the key recommendations in this regard are:

@ Standardization of output products

@ Error-bars and easy-to-understand statistics should accompany
results and derived products for more rigorous analysis.
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Importance of Noise Model for INSAR

@ Proper Quality Description
How precise are the INSAR products: deformation rate, timeseries,
etc 7 How to estimate correct error-bars?
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Importance of Noise Model for INSAR

@ Proper Quality Description
How precise are the INSAR products: deformation rate, timeseries,
etc 7 How to estimate correct error-bars?

® Proper Weighting in Geo-modeling and Data Integration
Exploitation of the inverse of the covariance matrix as a weight
matrix provides estimators with desired optimality aspects:
minimum variance, maximum likelihood.

©® Proper Noise Filtering
How to optimally separate signals (deformation) from noise
(atmosphere, scattering, etc.)

O Proper interpretation
To decide whether the InNSAR-based deformation estimates are
significant or not? (Difficult in case of correlated noise)
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 1:
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 2:
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Importance of Noise Models for INSAR

Two Aspects of Quality Description

@ Precision
What is the dispersion around the mean value? How wide shoule
be the error-bars?

® Accuracy
How close are the measurments to their true value? Effect of
Unwarpping errors!

The main goal of this study is to describe the precision of INSAR
timeseries in a generic from

For Accuracy and quality of Unwarpping, see our poster No.83
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INSAR Generic Noise Model: What do we already know?

A good body of knowledge of INSAR noise components
is already exist

@ Coherence_affected Noise
Goodman, 1976; Madsen, 1986; Bamler and Hartl, 1998, Hanssen
2001, and many other studies

® Atmospheric Noise
Hanssen 2001, Liu, 2012, and many other studies

©® Coherence_affected and atmosphere in timeseries
Monti-Guarnieri and Tebaldini, (2007)
Hybrid Cramer-Rao bound for InSAR timeseries
Agram and Simons (2015), A noise model for INSAR time series
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INSAR Generic Noise Model: What do we already know?

A good body of knowledge of INSAR noise components
is already exist

@ Coherence_affected Noise
Goodman, 1976; Madsen, 1986; Bamler and Hartl, 1998, Hanssen
2001, and many other studies

® Atmospheric Noise
Hanssen 2001, Liu, 2012, and many other studies

©® Coherence_affected and atmosphere in timeseries
Monti-Guarnieri and Tebaldini, (2007)
Hybrid Cramer-Rao bound for InSAR timeseries
Agram and Simons (2015), A noise model for INSAR time series

But, are these models representative for final INSAR timeseries/products
delivered by different algorithms/softwares?
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InNSAR Generic Noise Model: What is the problem?

Processing-induced noise?
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InNSAR Generic Noise Model: What is the problem?

Processing-induced noise?

@ Different spatial or temporal filtering steps reduce the noise
magnitude (Noise reduction)

® Different spatial or temporal filtering steps alters the noise structure

@ ooy e S
— T g g

Currently available noise models are not representative of true noise
structure in final INSAR timeseries
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INSAR Generic Noise Model: Influencing Factors

Noise structure of final InNSAR timeseries depends on :
@ Scattering characterstics of the targets (via coherence matrix or
amplitude stability)
@ Atmospheric delay heterogeneity (via atmopheric noise models)

©® Data characteristics (e.g., multilooking factor, number of
acquisitions, revisit time)

O Type of deformation mechanism and its spatio-temporal behavior
©® Temporal/Spatial kernels used for noise filtering

® Distribution and location of targets used for spatial filtering of
atmospheric effects
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INSAR Generic Noise Model: Influencing Factors

Noise structure of final InNSAR timeseries depends on :
@ Scattering characterstics of the targets (via coherence matrix or
amplitude stability)
@ Atmospheric delay heterogeneity (via atmopheric noise models)

©® Data characteristics (e.g., multilooking factor, number of
acquisitions, revisit time)

O Type of deformation mechanism and its spatio-temporal behavior
©® Temporal/Spatial kernels used for noise filtering

® Distribution and location of targets used for spatial filtering of
atmospheric effects

We need a generic noise model to account for all these factors
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INSAR Generic Noise Model: Uncertainty Propagation

¢ Uncertainty Propagation
To derive or assume a noise structure for raw InSAR timeseries

followed by an error propagation through all the processing steps.

Uncariainly Propagation

Hoise Siructum of (#.9.. variance propagasion) Maise Structune of
Pre-processed | m—— Processed
InZAR data InSAR resulls

Challenges of this approach
e Complexity of the processing steps
e Incomparable strategies/algorithms among InSAR methodologies,

e Large volume of spatio-temporal InSAR observations
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INSAR Generic Noise Model: Objectives

e To develop a methodology to propagate all the noise sources

e To design an efficient error propagation scheme through all the
processing steps

e The main focus on: Noise covariance matrix (not only variances)

e Large volume of data: to derive an analytical closed-form
expression to reconstruct the variances and covariances for any
given spatio-temporal deformation estimate.

Uncariainly Propagation

Hatse Struciune of (9.4, variancs propagasicon) Motse Shructune of
Pre-processed - Processed
InSAR data INSAR resulis
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INSAR Generic Noise Model: Steps

Steps:

@ Exploiting the existing body of knowledge about InNSAR noise
sources to propagate errors through the interferogram generation
steps (i.e., from statistics of SAR data to statistics of
interferometric phase time series)

@ Further error propagation in the fltering step.
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INSAR Generic Noise Model: Steps

Steps:

@ Exploiting the existing body of knowledge about InNSAR noise
sources to propagate errors through the interferogram generation
steps (i.e., from statistics of SAR data to statistics of
interferometric phase time series)

@ Further error propagation in the fltering step.

For the latter, we formulate the filtering step in a mathematical
framework based on the prediction theory (Least-squares Collocation or
Wiener Filtering). This mathematical formulation is:

» Generic: It can cover different existing methodologies/algorithms

¢ Flexible: It can digest deterministic/stochastic assumptions about
spatiotemporal behavior of different signal /noise components

e Simple: It allows the application of the linear error propagation
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INSAR Generic Noise Model:

Constructing the Mathematical Model
Generic form of the prediction model:

y= Ax + s + a + n
—— — — —
functional model | | Unmodeled Deformation | | Atmosphere | | Coherence_based noise

e y : timeseries of a PS/DS or timeseries of set of PS/DS or set of
phase values over a single interferogram

Ax : any spatial or temporal trend in the data (e.g. linear model,
planar spatial trend, etc.)

s : deformation not captured by Ax (described stochastically)
a : atmospheric signal, mainly turbulence (described stochastically)

e n: scattering, thermal, coregistration/respampling noise
components (described stochastically)

Q= Qe+ Qs+ Q
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InNSAR Generic Noise Model:
Constructing the Mathematical Model

Generic form of the prediction model:

y = Ax + S + a + n
— — — —
Functional model Unmodeled Deformation Atmosphere Coherence_based noise
z= Azx + S,
—— ——
Functional model Unmodeled Deformation

e z: final filtered timeseries of a PS/DS or a set of PS/DS
e Ax : any spatial or temporal deformation trend in z
e s : deformation not captured by A,x
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InNSAR Generic Noise Model:
Constructing the Mathematical Model

y=Ax+s+a+n Z=A,Xx+5;,
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R

step2: 2=Ax+ K(y—Ax) (Prediction of z)
2=A,Ry+K(y-ARy)=| (A,R+ K- AR)

F

<

Having F and Qy then we can obtain the covaraince matrix of 2 :

2=FQyFT

How to get Q) 7
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InNSAR Generic Noise Model:

Constructing Qy
Steps:
@ Exploiting the existing body of knowledge of INSAR noise sources

| Initial noise/stochastic model of random nﬁ'{:«r:t:—;|
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INSAR Generic Noise Model:

Constructing Qy
Steps:

@ Exploiting the existing body of knowledge of INSAR noise sources
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InNSAR Generic Noise Model:
Challenges

Challenges of the full error propagation: Q; = FQyFT

@ There are some filtering steps applied in the space domain and
some in the time domain

@ The error propagation should capable to join the spatial and the
temporal operations
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InNSAR Generic Noise Model:
Challenges

Challenges of the full error propagation: Q; = FQyFT

@ There are some filtering steps applied in the space domain and
some in the time domain

@ The error propagation should capable to join the spatial and the
temporal operations

Solution:
@ Applying a step-wise error propagation, first in time then in space

® Merging the temporal and spatial models together by a simple
transformation between the time domain and the space domain
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InNSAR Generic Noise Model:
Time+Space Filtering

Steps:

@ Apply a high-pass filter in the time domain on timeseries of set of
initial points (we call it set N) to separate deformation from
atmosphere/noise

® Apply a low-pass filter on the set N in each interferogram to
estimate the spatially low frequency noise (mainly atmospheric
noise)

© Interpolate the estimated noise on other set of points (we call it set
P) to get the correction

O Apply the correction on the phases of set P
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INSAR Generic Noise Model: Time Domain Propagation

Mathematical model for pixel j :

Vi Nx1 phase vector of pixel i

A;x; Temporal trend in timeseries of pixel i
[y,-]le = A,' Xj+Ssi+aj + n;
—_—— S; Nx1 phase vector of unmodeled defo

€; .

€ Nx1 phase vector of noise components
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INSAR Generic Noise Model:

Mathematical model for pixel j :

Yi
Aix;
[y,-]le = A,' Xjt+Sj+a; + n;
—— S,'
€
€

Solution for ¢; (high-pass filter) :

% = (AT WA)TTAT Wiy,
& = Ki(yi — Ai%i) =

K; (/N - A,‘A,-T VV:AI)_IA,TVVI) Yi

R;

Time Domain Propagation

Nx1 phase vector of pixel i

Temporal trend in timeseries of pixel i
Nx1 phase vector of unmodeled defo
Nx1 phase vector of noise components

W;  NxNweight matrix/
Ki  NxN high-pass kernel
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INSAR Generic Noise Model: Time Domain Propagation

Mathematical model for pixel / :

Mathematical model for ...
set of M pixels in an initial Network (denotes by N) :

é; K1 Ry Y1
& | _ K> R> y2
ém Km Rm] Lym

—— ——
én K R YN
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INSAR Generic Noise Model: Space Domain Propagation

Mathematical model for the network points in kth interferogram :

é{( éﬁ vector of estimated ecomponents
ak Bk S . . .
e atial trend in kth if;
2| = B’,sz+ak+nk IL\I P & ) ] )
: a“  Mx1lvectorof atmospheric noise kth ifg
Ak
em n*  Mx1 coh_based noise kth ifg
—
ak
€,
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INSAR Generic Noise Model: Space Domain Propagation

Mathematical model for the network points in kth interferogram :

é{( éﬁ vector of estimated ecomponents
ak Bk S . . .
e atial trend in kth if;
2| = BlN<zk+ak+nk IL\I P & ) ] )
: a“  Mx1lvectorof atmospheric noise kth ifg
Ak
em n*  Mx1 coh_based noise kth ifg
—
ak
€,

Solution for a, for set of p pixels in P in kth interferogram
(low pass filter):

sk = (BKTWkBk)1BET wkek W MxM weight matrixi
L¥  pxM high-pass kernel

sk _ pksk o kiak _ pksky _ pykak
ap = Bp2" + L*(&y — BN2¥) = H*&(

a5 = H &k
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INSAR Generic Noise Model:

éN = KR YN
[ ——
Time Domain Propagation

Space-Time Connection

af = H* &
—_———
Space Domain Propagation
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INSAR Generic Noise Model: Space-Time Connection

&y = KR yn ap = H &K
| — S —
Time Domain Propagation Space Domain Propagation

To merge these two equations, we should write é,ﬁ as a function of &y

k .,E £1
E = By = Sty E*" 'éz
o — 1.
A M=] :
ak E

L w.lém
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INSAR Generic Noise Model: Space-Time Connection

&n = KR ap = H &K
| — S —
Time Domain Propagation Space Domain Propagation

To merge these two equations, we should write é,ﬁ as a function of &y

. B]ra
E‘:' = ,.-ur"‘ El'ﬁl E'ﬁl ‘éz
4 - - :.'l"l
& E

| Sy u..-.;é"“

Merging all equations above, we get:

= H*S*KR yn
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INSAR Generic Noise Model: Final filtered phases

a8 = H*SKKR yy
—_———

Fk

Above equation is the correction that shoud be applied on phase values
of set P in the kth interferogram.
So the filtered phases of points in P in the kth and fth interferograms
are:
~ N k
yszylé‘—FkyN:> V| |l O F<1|7P
Jor =yt — Ff jorl “lo 4 FO[|PT
Ypf =Yp IN Ypf f N

The final filtered phases were written
as a linear function of original timeseries
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INSAR Generic Noise Model: precision of filtered phases

Precision of filtered phases is described by the dispersion of the
remaining noise sources in the filtered data:

k
k _  k_ rk k7] €p
ep = ep — F yn €pk | _ /I 0 F .
el'; = e,é - Ffyn [epr o 1 FF[|®
N ALY

F
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INSAR Generic Noise Model: precision of filtered phases

Precision of filtered phases is described by the dispersion of the
remaining noise sources in the filtered data:

k
eé:eé—FkyN €p | _ I 0 F*k 2'?
e,’;:e,é—nyN €pf o I FfI|P
%,_/y

F

Applying linear (co)variance propagation law:

Qp Que] .| et D]
P PP = F Qefeé erﬁ Qe’,ny F

QRrox Qs
PP k QeNyl’,r Quy

p
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INSAR Generic Noise Model: precision of filtered phases

(Co)variance matrix of phase values of points P in kth ifg:

Q= Qe — F Q

YNEp €pIN

k_Qk

T T
FK' + FFQy, F*

Cross (co)variance between kth and fth ifg:

Quker. = Qeker

- FA Qe - Q

YNEp

k
€pIN

7 k I
F' + FhQ,F
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INSAR Generic Noise Model: precision of filtered phases
(Co)variance matrix of phase values of points P in kth ifg:

T T
FK' + FFQy, F*

Qeé:Qeng—FkQ k—Qk

YNEp €pIN

Cross (co)variance between kth and fth ifg:

7 k I
F' + FhQ,F

k
Quier, = Qeet = F @y or = Qe

YNEp €pIYN

@ With the first equation we can compute the variance of any target in any
interferogram
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INSAR Generic Noise Model: precision of filtered phases
(Co)variance matrix of phase values of points P in kth ifg:

T T
F¥' + FkQ, F*

Qeé:Qeng—FkQ k—Qk

YNEp €pIN

Cross (co)variance between kth and fth ifg:

fr k 7
Ff'+ FkQ, F

k
Quier, = Qeet = F @y or = Qe

YNEp €pIYN

@ With the first equation we can compute the variance of any target in any
interferogram

@ With the second equation, we can compute the covariance between any
two phase values in the time/space domains

© F matrices captures all the filtering settings (e.g., type of the kernels,
location of points, functional models, etc)

@ Q matrices captures all the initial noise structure and effects of
pre-processing (e.g., phase linking, multilooking, etc)
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Synthetic data validation

To check the validity of the deriviations
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Synthetic data validation

To check the validity of the deriviations

A: Proposed model B: Empirical Cov Matrix Difference A- B

¥ ifg*PsT

¥ ifgPE2

# ifg* P52

& 5 LB T
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INSAR Generic Noise Model: Synthetic Data Example

Effect of filtering
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INSAR Generic Noise Model: Synthetic Data Example

Effect of point density of the initial network N
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INSAR Generic Noise Model: Synthetic Data Example

Effect of revisit time
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INSAR Generic Noise Model: Synthetic Data Example

Effect of unmodeled deformation

Unmodeled Defio. [mm]

# ifg*Ps2

Variance [mam® |
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INSAR Generic Noise Model: Synthetic Data Example

Effect of Kernel type used for filtering in the time domain
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021

Velocity

3561

Latitude [deg.]
3559

51.3 91.32 51.34 51.36
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021
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INSAR Generic Noise Model: Real Data
30 SLC images, Sentinel-1A, one year of data 2021
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INSAR Generic Noise Model: Real Data

30 SLC images, Sentinel-1A, one year of data 2021
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 1:
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 1:

deformation Smeseries
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 1:

If we have the full Q, We can test whether this is a signal or noise:

yTQ_1y~X2(N) N : number of images

yTQly=54 < X30s5(50) =67
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 2:
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 2:
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Importance of Noise Models for INSAR

Interpretation: Deformation or Noise?
Example 2:

If we have the full Q, We can test whether this is a signal or noise:

yTQ7ly ~x?(N)  N: number of points on the profile
yTQly =34 < x305(30) = 44
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e We introduced a new methodology to propagate the effect of all
the noise sources to the precision of the final deformation estimates

e The proposed closed-form expression provides the noise variance
and covariances for any given set of spatio-temporal deformation
estimates

e The proposed approach is capable to quantify the effect of
signal/noise characteristics and processing settings on the precision
of the final timeseries

e The proposed formulation can be easily extended to cover other
processing steps

e In TInSAR results we usually have spatio-temporally
correlated /smooth noise

e Error-bars are not enough, we need to address the covariances!
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Temporal vs Spatial Structure
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Fig. 4: The sclwmatic prescatation of the spatial-temporal stractane of the
covarance matex for 4 polists and 3 interferograms. The variasce ael covar-
arree values can b classified nte four different groups A varanoes, B: spatial
covariances, O temporal covarianes, amd Dk spatio-temporal covarianes, a)
Temporal structure b) Spatial stroecture,
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