Repeat Pass Interferometric and Polarimetric SAR Data for Snow Water Equivalent Retrieval

Kristina Belinska^{1,2}, Georg Fischer¹, Christian Barthlott³, Julia Boike⁴, Irena Hajnsek^{1,2}

¹Microwaves and Radar Institute, German Aerospace Center ²Institute of Environmental Engineering, ETH Zurich ³Institute of Meteorology and Climate Research, KIT ⁴Alfred-Wegener-Institute, AWI

FRINGE 2023, 12.09.2023

Motivation

Snow Water Equivalent

Amount of liquid water contained within a snow pack
 → depth of water, if whole snow pack melted instantaneously

$$SWE = \frac{1}{\rho_w} \int_0^{Z_s} \rho_s(z) dz \approx Z_s \rho_s / \rho_w$$

Important Parameter for

Hydrological and climate models

Water resource planning

Flood predictions

https://www.sieker.de/en/fachinformationen/flood/hydrologic al-modelling.html

https://www.drax.com/about-us/our-sites-andbusinesses/cruachan-power-station/

https://www.wkbw.com/news/local-news/rain-snow-melt-floods-basements-of-orchard-park-homeowners

DInSAR model for SWE Estimation

- Repeat pass SAR acquisitions
- Different dielectric properties in snow compared to air
 → Refraction of radar waves in the snow pack
 - → Different optical path length for snow compared to no snow conditions

• Path delay ΔR can be translated into an interferometric phase difference

$$\Delta \Phi_s = -2 k_i \, \Delta Z_s (\cos \Theta - \sqrt{\epsilon - \sin^2 \Theta})$$

- Guneriussen et al.: InSAR for estimation of changes in snow water equivalent of dry snow, 2001 - Leinss et al.: Snow Water Equivalent of Dry Snow Measured by Differential Interferometry, 2015

DInSAR model for SWE Estimation

Limitations

- Temporal decorrelation
- Phase calibration
- Different phase delay for different polarizations
- $\Delta \Phi_s$ between $[-\pi, \pi] \rightarrow$ outside this interval phase wrapping errors

Methods

SWE Estimation using DInSAR Phase

- Only limited range of SWE change can be retrieved using the X-band measurements → [-8 mm, +8 mm]
- Underestimation of SWE changes above this threshold
- In-Situ measurements used to check if SWE change lies above phase wrap threshold
 Situme advance and the second secon
 - ightarrow if yes, phase cycle is added
- Phase wraps are one of the main limitations

Methods

Multifrequency Approach for Phase Wrap Correction

- ΔSWE estimates from longer wavelength (e.g. L band) are used to correct the ΔSWE estimates from shorter wavelength (e.g. C band)

Multifrequency Approach for Phase Wrap Correction

- Sentinel 1 data is used to retrieve the SWE change
 - \rightarrow Multifrequency correction using ALOS 2

data

	RMSE (mm)
No correction	13.38
Multifrequency correction	10.09
In-Situ correction	9.66

Methods

PolSAR CPD model for Snow Depth Estimation

 Additional information about snow accumulation contained in co-polar-phase difference

 $\Phi_{CPD} = \Phi_{VV} - \Phi_{HH}$

 Different polarizations show different propagation speeds in anisotropic snow

- Snow model: ellipsoidal ice inclusions in air
- Assumption of snow anisotropy and density
 → refractive indices for HH and VV

Example TDX

PoISAR CPD model for Snow Depth Estimation

Advantages

- Less sensitive to phase wraps
- No absolute phase calibration necessary

Limitation for InSAR and PolSAR

Combination of Interferometric and Polarimetric Measurements – Temporal Coherence Region

Two PolSAR acquisitions

14

- \rightarrow coherency matrices T_{11} and T_{22}
- \rightarrow temporal PollnSAR matrix $\boldsymbol{\varOmega}_{12}$

• Temporal polarimetric coherence ρ

$$\rho(\omega_1, \omega_2) = \frac{\omega_1^H \mathbf{\Omega}_{12} \omega_2}{\sqrt{(\omega_1^H \mathbf{T}_{11} \omega_1)(\omega_2^H \mathbf{T}_{22} \omega_2)}}$$

 $\omega \not \rightarrow$ unitary vectors of polarization states

Jun Ni et al., Multitemporal SAR and Polarimetric SAR Optimization and Classification: Reinterpreting Temporal Coherence, 2022

Model Scattering Matrix
$$[S_P] = [P_2][S][P_2]^T$$
S: Scattering Matrix \square P_2 : Propagation Matrix \square DInSAR model \square CPD model

DInSAR phase and polarimetric phase change

Phase wrap can be observed

16

Increasing difference between VV and HH

change

Phase extent yields higher values than CPD

DInSAR phase and polarimetric phase change

Increasing difference between VV and HH

Similar behavior as for snow depth change

Temporal Coherence region

[1] Helmut Rott et al., Snow Mass Retrieval by Means of SAR Interferometry, 2003

18

- Include decorrelation effects
 - Temporal decorrelation [1]
 - $|\gamma_{temp}| \approx 0.75$
 - SNR decorrelation
 - Noise: -10dB

Summary and Outlook

Summary

- Multifrequency and polarimetric approach promising for phase wrap correction
- Phase extent of D-PollnSAR higher sensitivity than CPD
- Modeling of coherence regions for snow depth and anisotropy changes shows similar behavior as real data

Next Steps

- Not yet possible to separate anisotropy and snow depth change
 → Further investigation of the influence of snow changes on different polarization states
- Establishment of a retrieval based on coherence region parameters

